A Novel Algorithm for Internal Impedance Computation of Solid and Tubular Cylindrical Conductors

Abstract

Computation of the internal impedance per unit length of solid and tubular cylindrical conductors, energized by time-harmonic current, needs to take into account the skin effect. Computation algorithm often involves direct numerical manipulations with Bessel functions, which yields unstable and often erroneous results for large magnitudes of the function argument at high frequencies. In order to alleviate the afore mentioned problem, this paper presents a novel computational algorithm based on the Hankel asymptotic approximations of the Bessel functions for large magnitudes of the arguments. Proposed approximate formulas assure numerical stability and very high accuracy of the numerical solution, even in case of very large function arguments. They are, at the same time, very convenient for the numerical implementation in any high level programming language.

Publication
International review of electrical engineering
Slavko Vujević
Slavko Vujević
Professor Emeritus

An expert in electrical engineering, particularly known for his contributions to numerical modeling of electromagnetic phenomena, lightning protection, and grounding. Throughout his career, he was a key member of the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, where he taught, mentored students, and actively participated in scientific research and international professional organizations.

Petar Sarajčev
Petar Sarajčev
Full Professor | Department of Power Grids and Substations