Stability Analysis of Three-Phase PWM Converter with LCL Filter by Means of Nonlinear Model

Abstract

In this paper the stability problem of the three phase PWM converters with LCL filter without additional passive or active damping is analyzed. The system with the converter current feedback is considered where the stability problem is more acute. The analysis is performed using two theoretical methods, the discrete z-domain root locus technique and the nonlinear model simulation. The system with two different LCL filters is considered, one with the iron core inductors and the other with the air core inductors. In that way the influence of the iron losses on the system stability is investigated. It is shown that the stability margins obtained by means of the nonlinear model simulation are somewhat wider than the ones obtained by the root locus technique. The theoretical results are validated by the measurements performed on a 40 kW laboratory setup.

Publication
Automatika - Journal for Control, Measurement, Electronics, Computing and Communications
Božo Terzić
Božo Terzić
Full Professor | Department of Electrical Drives and Industrial Control

Full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, with significant contributions in the field of industrial development projects including the design of prototypes of electronic converters used in industrial plants around the world. His research interests are focused on the application of electronic converters in electric drives and renewable energy sources.

Goran Majić
Goran Majić
Assistant Professor | Department of Electrical Drives and Industrial Control