Abstract
This paper presents a vector control system of the self-excited induction generator (SEIG) employing an indirect rotor-field-oriented (IRFO) control algorithm. In the system, the excitation is achieved by means of a current-controlled voltage source inverter and a single electrolytic capacitor. The objective is to keep the DC voltage across the capacitor constant and equal to the reference value, regardless of changes in the rotor speed and load. To achieve this, two different-type fuzzy logic (FL) voltage controllers are proposed and investigated. The performance of the developed FL voltage controllers is evaluated by comparison with the optimal-tuned classical PI controller. The analysis is carried out for wide ranges of rotor speed, load and DC voltage, both on the simulation and experimental level.
Publication
International journal of circuits, systems and signal processing

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, with recent research interests related to the fields of power electronics and renewable energy sources, with a special focus on energy-efficient control of inverters, battery systems, wind turbines, photovoltaic sources and self-excited induction generators in microgrids - both in island operation and in grid-tie operation.

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, specialized in modern control systems for power electronic converters, electric motors, and generators. At the Power Electronics Research Laboratory, he leads experimental projects and develops advanced methods for regulating electrical machines and converters, while supervising doctoral research in these areas.