Abstract
This paper provides analysis of losses in the hysteresis-driven three-phase power converter with IGBTs and free-wheeling diodes. The converter under consideration is part of the self-excited induction generator (SEIG) vector control system. For the analysis, the SEIG vector control system is used in which the induction generator iron losses are taken into account. The power converter losses are determined by using a suitable loss estimation algorithm reported in literature. The chosen algorithm allows the power converter losses to be determined both by type switching/conduction losses) and by converter component (IGBT/diode losses). The overall power converter losses are determined over wide ranges of rotor speed, dc- link voltage and load resistance, and subsequently used for offline correction of the overall control system’s losses (efficiency)obtained through control system simulations with an ideal power converter. The control system’s efficiency values obtained after the correction are compared with the measured values.
Publication
Journal of Electrical Engineering - Elektrotechnický casopis

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, with recent research interests related to the fields of power electronics and renewable energy sources, with a special focus on energy-efficient control of inverters, battery systems, wind turbines, photovoltaic sources and self-excited induction generators in microgrids - both in island operation and in grid-tie operation.

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, specialized in modern control systems for power electronic converters, electric motors, and generators. At the Power Electronics Research Laboratory, he leads experimental projects and develops advanced methods for regulating electrical machines and converters, while supervising doctoral research in these areas.