Statistical Description of Counterpoise Effective Length Based On Regressive Formulas

Abstract

This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.

Publication
International Journal of Electrical, Computer, Electronics and Communication Engineering
Petar Sarajčev
Petar Sarajčev
Full Professor | Department of Power Grids and Substations
Josip Vasilj
Josip Vasilj
Associate Professor | Department of Power Grids and Substations

Researcher and Associate Professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, where he teaches courses related to engineering economics, power system analysis, power grids and machine learning. His research focus is the application of advanced numerical methods to problems in the analysis and planning of power system operations.

Damir Jakus
Damir Jakus
Full Professor | Department of Power Grids and Substations

Researcher and a full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split. His research interests include power system optimization and planning, RES integration, electricity market modeling.