Abstract
This paper presents an equivalent-circuit-based method to experimentally determine the phase inductance and the iron-loss resistance of a switched reluctance machine (SRM). The proposed equivalent circuit of the SRM phase consists of the winding resistance, the winding inductance and the iron-loss resistance. In this paper, the iron-loss resistance is represented as variable with respect to the phase current, the dc supply voltage and the rotor position. The phase inductance is represented as variable with respect to the phase current and the rotor position. The phase winding resistance is represented by a constant parameter. The proposed method allows estimation of the rotary SRM’s iron losses for single-pulse operating regimes.
Publication
Advances in Electrical and Computer Engineering

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, specialized in modern control systems for power electronic converters, electric motors, and generators. At the Power Electronics Research Laboratory, he leads experimental projects and develops advanced methods for regulating electrical machines and converters, while supervising doctoral research in these areas.

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, with recent research interests related to the fields of power electronics and renewable energy sources, with a special focus on energy-efficient control of inverters, battery systems, wind turbines, photovoltaic sources and self-excited induction generators in microgrids - both in island operation and in grid-tie operation.