Abstract
In this paper, a frequency-domain-based transient electromagnetic model of grounding system in horizontally stratified multilayer medium is presented. The basis of the model is an improved version of the time-harmonic electromagnetic model of grounding system. Using the originally developed continuous numerical Fourier transform algorithm, the results obtained by the time-harmonic model are synthesized into a complete time domain solution. The presented model features very high accuracy and fast execution speed and is validated through several numerical examples.
Publication
Progress in electromagnetics research M

Associate Professor | Department of Theoretical Electrical Engineering and Modelling
Associate professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, with reserch focused on the development of numerical models of grounding systems in various types of soil, particularly in scenarios involving the dissipation of alternating current and transient currents caused by lightning strikes or switching overvoltages, also involved in developing models of dynamic and transient processes in power systems using modern numerical methods.

Professor Emeritus
An expert in electrical engineering, particularly known for his contributions to numerical modeling of electromagnetic phenomena, lightning protection, and grounding. Throughout his career, he was a key member of the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, where he taught, mentored students, and actively participated in scientific research and international professional organizations.