Online Efficiency Optimization of a Vector Controlled Self-Excited Induction Generator

Abstract

This paper presents a search-based approach to efficiency optimization of a vector controlled self-excited induction generator (SEIG). The main parts of the control system, besides the SEIG, are a prime mover, a three-phase power converter, and a dc load. The optimization algorithm is executed online and it relies on fuzzy logic (FL) to minimize the internal losses of the SEIG. This is done by adjusting the rotor flux reference. As opposed to existing strategies, additional effort is made to ensure stable operation of the SEIG while the optimization is put on hold and also to avoid the optimization-induced detuning. The iron losses of the SEIG are accounted for in the proposed vector control algorithm as dependent on both the operating flux and frequency. The simulation model of the control system is developed in the MATLAB/Simulink for the purpose of FL controller design, followed by experimental validation. The control algorithm is experimentally implemented using dSpace DS1104 board.

Publication
IEEE transactions on energy conversion
Mateo Bašić
Mateo Bašić
Full Professor | Department of Power Electronics and Control

Full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, with recent research interests related to the fields of power electronics and renewable energy sources, with a special focus on energy-efficient control of inverters, battery systems, wind turbines, photovoltaic sources and self-excited induction generators in microgrids - both in island operation and in grid-tie operation.

Dinko Vukadinović
Dinko Vukadinović
Full Professor | Department of Power Electronics and Control

Full professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, specialized in modern control systems for power electronic converters, electric motors, and generators. At the Power Electronics Research Laboratory, he leads experimental projects and develops advanced methods for regulating electrical machines and converters, while supervising doctoral research in these areas.