Integral Equation Formulations and Related Numerical Solution Methods in Some Biomedical Applications of Electromagnetic Fields

Abstract

The paper reviews certain integral equation approaches and related numerical methods used in studies of biomedical applications of electromagnetic fields pertaining to transcranial magnetic stimulation (TMS) and nerve fiber stimulation. TMS is analyzed by solving the set of coupled surface integral equations (SIEs), while the numerical solution of governing equations is carried out via Method of Moments (MoM) scheme. A myelinated nerve fiber, stimulated by a current source, is represented by a straight thin wire antenna. The model is based on the corresponding homogeneous Pocklington integro-differential equation solved by means of the Galerkin Bubnov Indirect Boundary Element Method (GB-IBEM). Some illustrative numerical results for the TMS induced fields and intracellular current distribution along the myelinated nerve fiber (active and passive), respectively, are presented in the paper.

Publication
International Journal of E-Health and Medical Communications
Mario Cvetković
Mario Cvetković
Associate Professor | Department of Electrical Engineering Fundamentals

Associate professor at FESB in Split, with a research focus on numerical modeling including finite element and moment methods, computational bioelectromagnetics and heat transfer related phenomena. He is involved in IEEE’s ICES Technical Committee 95, various international projects and is committed to advancing both knowledge and practical applications in electromagnetic safety and biomedical engineering.