Computation of Carson formulas using piecewise approximation of kernel function

Abstract

Novel approach for high-accurate computation of Carson formulas is presented. Carson formulas are used for computation of per-unit length (pul) self and mutual impedances of infinitely long parallel conductors. Numerical algorithm described in this paper uses a piecewise approximation of kernel function which appears in Carson formula corrections. Approximated kernel function is multiplied by the rest of integrands in impedance correction expressions and analytically integrated. Using the proposed algorithm, high-accurate results with the desired computer machine n-digit accuracy can easily be obtained. Results computed by the proposed algorithm are compared with two most commonly used approximation methods for large frequency range.

Publication
International journal for engineering modelling
Ivan Krolo
Ivan Krolo
Assistant Professor | Department of Theoretical Electrical Engineering and Modelling

Researcher and assistant professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, with research focus on the development of numerical models for grounding systems and issues related to electrical safety in low-voltage and high-voltage systems.

Slavko Vujević
Slavko Vujević
Professor Emeritus

An expert in electrical engineering, particularly known for his contributions to numerical modeling of electromagnetic phenomena, lightning protection, and grounding. Throughout his career, he was a key member of the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, where he taught, mentored students, and actively participated in scientific research and international professional organizations.

Tonći Modrić
Tonći Modrić
Associate Professor | Department of Electrical Intallations and Systems

Researcher and Full Professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split. His research focus is numerical modeling and calculation of the electric and magnetic fields in power systems and transmission lines, with an emphasis on the development of advanced models for interpreting geoelectrical ground survey data. Additionally, he is involved in the analysis of electromagnetic transients in systems with a high share of renewable energy sources, using finite element techniques.