Virtual Storage-Based Model for Estimation of Economic Benefits of Electric Vehicles in Renewable Portfolios

Abstract

The expected increase in the presence of electric vehicles raises numerous questions regarding their impact on the market relations. Depending on the agreement between the involved parties, the position of EVs changes from passive (traditional role) to active. Active EVs are beneficial for variability and uncertainty- intense modern power systems. To enable this transition, a suitable framework in the form of agreements is required in order to establish the terms and responsibilities. Following the presented agreements, we propose a novel method for evaluation of the benefits that the newly added EVs bring to the portfolio. The method comprises two steps, a Monte Carlo simulation of the EV driving/charging patterns and an optimization model for market related decision making. The method results in the estimates on economic savings resulting from adding EVs to portfolios. An illustrative example is used in order to give an idea of the range of the benefits.

Publication
Energies
Josip Vasilj
Josip Vasilj
Associate Professor | Department of Power Grids and Substations

Researcher and Associate Professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, where he teaches courses related to engineering economics, power system analysis, power grids and machine learning. His research focus is the application of advanced numerical methods to problems in the analysis and planning of power system operations.

Damir Jakus
Damir Jakus
Full Professor | Department of Power Grids and Substations

Researcher and a full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split. His research interests include power system optimization and planning, RES integration, electricity market modeling.

Petar Sarajčev
Petar Sarajčev
Full Professor | Department of Power Grids and Substations