Abstract
In this manuscript, a novel method for computation of per-unit-length internal impedance of a cylindrical multilayer conductor with conductive and dielectric layers is presented in detail. In addition to this, formulas for computation of electric and magnetic field distribution throughout the entire multilayer conductor (including dielectric layers) have been derived. The presented formulas for electric and magnetic field in conductive layers have been directly derived from Maxwell equations using modified Bessel functions. However, electric and magnetic field in dielectric layers has been computed indirectly from the electric and magnetic fields in contiguous conductive layers which reduces the total number of unknowns in the system of equations. Displacement currents have been disregarded in both conductive and dielectric layers. This is justifiable if the conductive layers are good conductors. The validity of introducing these approximations is tested in the paper versus a model that takes into account displacement currents in all types of layers.
Publication
Facta Universitatis, Series: Electronics and Energetics

Associate Professor | Department of Theoretical Electrical Engineering and Modelling
Associate professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, with reserch focused on the development of numerical models of grounding systems in various types of soil, particularly in scenarios involving the dissipation of alternating current and transient currents caused by lightning strikes or switching overvoltages, also involved in developing models of dynamic and transient processes in power systems using modern numerical methods.

Professor Emeritus
An expert in electrical engineering, particularly known for his contributions to numerical modeling of electromagnetic phenomena, lightning protection, and grounding. Throughout his career, he was a key member of the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, where he taught, mentored students, and actively participated in scientific research and international professional organizations.

Assistant Professor | Department of Theoretical Electrical Engineering and Modelling
Researcher and assistant professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, with research focus on the development of numerical models for grounding systems and issues related to electrical safety in low-voltage and high-voltage systems.