Abstract
For the cost-effectiveness of variable-speed wind energy conversion systems (WECSs), it is extremely important to extract the maximum available power at different wind speeds within the normal operating range. Furthermore, reduction of the electric generator losses additionally contributes to the efficiency of the WECS, whereas reduction of the number of sensors is beneficial in terms of reliability and cost. This paper presents sensorless control of a stand- alone WECS comprising a squirrel-cage induction generator (IG) and a battery system. An indirect rotor-field- oriented control (IRFOC) algorithm including stray load and iron losses and online tuning of IG’s equivalent resistances and magnetising inductance is adopted for IG control to achieve high level of agreement with the actual machine. Fuzzy-logic-based optimisations of the wind turbine (WT) and IG are implemented to maximise the IG output power. The IG speed, which is required by the IRFOC algorithm, is estimated by using a model- reference- adaptivesystem. The estimated IG speed is also utilised for online WT optimisation in combination with the IG torque obtained from the IRFOC equations. The performance of the proposed control strategy has been experimentally evaluated and compared with two competing sensorless control strategies for two 1.5 kW IGs of different efficiency class.
Publication
Journal of Electrical Engineering & Technology

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, with recent research interests related to the fields of power electronics and renewable energy sources, with a special focus on energy-efficient control of inverters, battery systems, wind turbines, photovoltaic sources and self-excited induction generators in microgrids - both in island operation and in grid-tie operation.

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, specialized in modern control systems for power electronic converters, electric motors, and generators. At the Power Electronics Research Laboratory, he leads experimental projects and develops advanced methods for regulating electrical machines and converters, while supervising doctoral research in these areas.

Assistant Professor | Department of Power Electronics and Control
Assistant professor at the Faculty of Electrical Engineering, Mechanical Engineering and Architecture in Split, specialized in the research of power electronic converters in photovoltaic systems and microgrids. Currently, he teaches courses in the areas of control engineering, digital electronics, electrical engineering, electrical machines and transformers.