Abstract
In this paper, an advanced simulation model of a quasi-Z-Source inverter (qZSI) is presented. The model has been built in MATLAB-Simulink by using only standard blocks. It is based upon the qZSI’s nonlinear differential equations, i.e., without resorting to state-space averaging and small-signal analysis. In the proposed model, the equations for the non- shoot-through state and those for the shoot- through state are alternately executed, depending on the qZSI state. The parasitic resistances of the qZSI capacitors/inductors as well as the magnetic saturation of the qZSI inductors are all accounted for. The impact of these factors on the qZSI’s transient and steady-state performance is evaluated and analyzed both on the simulation and experimental level.

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, with recent research interests related to the fields of power electronics and renewable energy sources, with a special focus on energy-efficient control of inverters, battery systems, wind turbines, photovoltaic sources and self-excited induction generators in microgrids - both in island operation and in grid-tie operation.

Full Professor | Department of Power Electronics and Control
Full professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, specialized in modern control systems for power electronic converters, electric motors, and generators. At the Power Electronics Research Laboratory, he leads experimental projects and develops advanced methods for regulating electrical machines and converters, while supervising doctoral research in these areas.