Ensemble learning with time-series clustering for aggregated short-term load forecasting

Abstract

Load forecasting, as one of the important research areas of the smart grids, spans a wide range of methods, from traditional time-series econometric analyses to different machine learning and, recently, even deep learning approaches. This paper proposes a novel machine learning approach for short-term load time-series forecasting, which utilizes aggregate load clustering with ensemble learning based on the windowing method. Ensemble of base learners, comprised of gradient boosting, support vector machine (SVM) and random forest, is created by stacking models with an “elastic net” linear regression. Models hyper-parameters are fine-tuned using a grid search with cross-validation approach, except for the SVM, where Bayesian optimization is introduced. Features engineering and selection based on the importance analysis is employed, using weather and load time-series data. The mean absolute percentage error is used for verification. Obtained results show that the proposed approach exhibits accurate and robust predictions.

Publication
Proceedings of the 20th IEEE Mediterranean Electrotechnical Conference (IEEE MELECON 2020)
Petar Sarajčev
Petar Sarajčev
Full Professor | Department of Power Grids and Substations
Damir Jakus
Damir Jakus
Full Professor | Department of Power Grids and Substations

Researcher and a full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split. His research interests include power system optimization and planning, RES integration, electricity market modeling.

Josip Vasilj
Josip Vasilj
Associate Professor | Department of Power Grids and Substations

Researcher and Associate Professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, where he teaches courses related to engineering economics, power system analysis, power grids and machine learning. His research focus is the application of advanced numerical methods to problems in the analysis and planning of power system operations.