IEEE New England 39-bus test case: Dataset for the Transient Stability Assessment

Abstract

The dataset contains 350 features engineered from the phasor measurements (PMU-type) signals from the IEEE New England 39-bus power system test case network, which are generated from the 9360 systematic MATLAB®/Simulink electro-mechanical transients simulations. It was prepared to serve as a convenient and open database for experimenting with different types of machine learning techniques for transient stability assessment (TSA) of electrical power systems. Different load and generation levels of the New England 39-bus benchmark power system were systematically covered, as well as all three major types of short-circuit events (three-phase, two-phase and single-phase faults) in all parts of the network. The consumed power of the network was set to 80%, 90%, 100%, 110% and 120% of the basic system load levels. The short-circuits were located on the busbar or on the transmission line (TL). When they were located on a TL, it was assumed that they can occur at 20%, 40%, 60%, and 80% of the line length. Features were obtained directly from the time-domain signals at the pickup time (pre-fault value) and at the trip time (post-fault value) of the associated distance protection relays. This is a stochastic dataset of 3120 cases, created from the population of 9360 systematic simulations, which features a statistical distribution of different fault types, as follows: single-phase (70%), double-phase (20%) and three-phase faults (10%). It also features a class imbalance, with less than 20% of cases belonging to the unstable class.

Type
Petar Sarajčev
Petar Sarajčev
Full Professor | Department of Power Grids and Substations
Goran Petrović
Goran Petrović
Full Professor | Department of Electrical Measurements

Prof. dr. sc. Goran Petrović is a full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Architecture in Split. His research interests include measurement of electrical and process quantities, analysis of geoelectrical and geothermal features of the soil, instrumentation for smart grids, measurement and application of synchrophasors. He is the author of numerous papers published in top-tier scientific journals and contributed to valuable international and national scientific projects.

Marin Despalatović
Marin Despalatović
Full Professor | Department of Electrical Drives and Industrial Control

Full professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, where he teaches courses Electric Machines, Electric Drive Systems, and Electromechanical System Modeling. His research focuses on power systems, energy storage, and smart grid technologies, with active participation in multiple national and international projects aimed at advancing energy infrastructure and improving system stability.