Dataset of lightning flashovers on medium voltage distribution lines

Abstract

This synthetic dataset was generated from Monte Carlo simulations of lightning flashovers on medium voltage (MV) distribution lines. It is suitable for training machine learning models for classifying lightning flashovers on distribution lines. The dataset is hierarchical and class imbalanced. Following five different types of lightning interaction with the MV distribution line have been simulated: (1) direct strike to phase conductor (when there is no shield wire present on the line), (2) direct strike to phase conductor with shield wire(s) present on the line (i.e. shielding failure), (3) direct strike to shield wire with backflashover event, (4) indirect near-by lightning strike to ground where shield wire is not present, and (5) indirect near-by lightning strike to ground where shield wire is present on the line. Last two types of lightning interactions induce overvoltage on the phase conductors by radiating EM fields from the strike channel that are coupled to the line conductors. Three different methods of indirect strike analysis have been implemented, as follows: Rusck’s model, Chowdhuri-Gross model and Liew-Mar model. Shield wire(s) provide shielding effects to direct, as well as screening effects to indirect, lightning strikes. Dataset consists of two independent distribution lines, with heights of 12 m and 15 m, each with a flat configuration of phase conductors. Twin shield wires, if present, are 1.5 m above the phase conductors and 3 m apart [2]. CFO level of the 12 m distribution line is 150 kV and that of the 15 m distribution line is 160 kV. Dataset consists of 10000 simulations for each of the distribution lines.

Type
Petar Sarajčev
Petar Sarajčev
Full Professor | Department of Power Grids and Substations