Optimal Electric Vehicle Parking Lot Energy Supply Based on Mixed-Integer Linear Programming

Abstract

E-mobility represents an important part of the EU’s green transition and one of the key drivers for reducing CO2 pollution in urban areas. To accelerate the e-mobility sector’s development it is necessary to invest in energy infrastructure and to assure favorable conditions in terms of competitive electricity prices to make the technology even more attractive. Large peak consumption of parking lots which use different variants of uncoordinated charging strategies increases grid problems and increases electricity supply costs. On the other hand, as observed lately in energy markets, different, mostly uncontrollable, factors can drive electricity prices to extreme levels, making the use of electric vehicles very expensive. In order to reduce exposure to these extreme conditions, it is essential to identify the optimal way to supply parking lots in the long term and to apply an adequate charging strategy that can help to reduce costs for end consumers and bring higher profit for parking lot owners. The significant decline in photovoltaic (PV) and battery storage technology costs makes them an ideal complement for the future supply of parking lots if they are used in an optimal manner in coordination with an adequate charging strategy. This paper addresses the optimal power supply investment problem related to parking lot electricity supply coupled with the application of an optimal EV charging strategy. The proposed optimization model determines optimal investment decisions related to grid supply and contracted peak power, PV plant capacity, battery storage capacity, and operation while optimizing EV charging. The model uses realistic data of EV charging patterns (arrival, departure, energy requirements, etc.) which are derived from commercial platforms. The model is applied using the data and prices from the Croatian market.

Publication
Energies (Basel)
Damir Jakus
Damir Jakus
Full Professor | Department of Power Grids and Substations

Researcher and a full professor at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split. His research interests include power system optimization and planning, RES integration, electricity market modeling.

Josip Vasilj
Josip Vasilj
Associate Professor | Department of Power Grids and Substations

Researcher and Associate Professor at the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture in Split, where he teaches courses related to engineering economics, power system analysis, power grids and machine learning. His research focus is the application of advanced numerical methods to problems in the analysis and planning of power system operations.

Danijel Jolevski
Danijel Jolevski
Associate Professor | Department of Electrical Drives and Industrial Control